我们通过上一篇《Android消息机制Handler,Looper,Message,MessageQueue关系之一》知道,Android的消息机制必须将Handler,Looper,Message,MessageQueue一起“组织”起来,而且是缺一不可。
比如在子线程中使用Handler必须先Looper.prepare(),然后Looper.loop(),这样才有作用。(主线程也是这样声明的,具体可看第一篇,这里是从子线程中第一个消息机制开始讲解)
直接上代码
//代码片段3,加Looper.prepare()和Looper.loop()
private class MyThread extends Thread{
@Override
public void run() {
super.run();
//初始化
Looper.prepare(); //[1.0 Looper的初始化]
myHandler =new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
//to do something
}
};
//循环
Looper.loop(); //[2.0 Looper的循环]
//这下面的代码一般情况是不会执行的
}
}
Looper.prepare();
下面是prepare(),最终调用的还是prepare(boolean quitAllowed)。
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));//[1.1 Looper的初始化和保存]
}
Looper的初始化和保存
我们上次分析过ThreadLocal它是用来保存各线程中变量的值(此处是Looper对象),而且各线程互不影响。
Looper的构造函数中只是初始化了MessageQueue和Thread对象
// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static Looper sMainLooper; // guarded by Looper.class
final MessageQueue mQueue;
final Thread mThread;
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed); //[1.2 MessageQueue的初始化,这样Looper和MessageQueue扯上了关系]
mThread = Thread.currentThread();
}
MessageQueue的初始化
直接调用MessageQueue的构造函数,同时传入一个是否允许退出的标志位quiteAllowed
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed; //主线程中的Looper是不允许退出的(quitAllowed=false),其他子线程是允许的(quitAllowed= true)
mPtr = nativeInit(); //通过native方法初始化消息队列,其中mPtr是供native代码使用(此处摘于gityuan.com)
}
//是否允许退出,主线程是不允许退出的
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();
} else {
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
Looper的循环
直接看代码,代码有点多。
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper(); //获取当前的looper对象,如果没有prepare,就抛出异常
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;//获取当前looper对象中的MessageQueue
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {// 死循环
Message msg = queue.next(); // might block //[2.1获取下一条Message,这里有提示,可能阻塞]
if (msg == null) {//如果为null.就退出死循环
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg); //[2.2 Handler消息的分发,msg.target就是Handler]
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();//[2.3 Message的回收]
}
}
从MessageQueue中获取Message
queue.next()获取的是Message,这里可能阻塞。
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr; //[2.1.1当消息循环已经退出,则直接返回]
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
//这里也有一个死循环,
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//阻塞操作,当等待nextPollTimeoutMillis时长,或者消息队列被唤醒,都会返回(摘于gityuan.com)
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
//当消息Handler为空时,查询MessageQueue中的下一条异步消息msg,则退出循环。(摘于gityuan.com)
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
//获取一条message 同时把阻塞标签mBlocked置为false
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
//设置消息的使用状态,即flags |= FLAG_IN_USE
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1; //表示消息队列中无消息,会一直等待下去
}
// Process the quit message now that all pending messages have been handled.
//正在退出
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
//pendingIdleHandlerCount,开头是初始化为-1(直接看英文)
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
//没有idle Handler
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
// //只有第一次循环时,会运行idle handlers,执行完成后,重置pendingIdleHandlerCount为0.(摘于gityuan.com)
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler //去掉handler的引用
boolean keep = false;
try {
keep = idler.queueIdle(); //idle时执行的方法
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
//重置idle handler个数为0,以保证不会再次重复运行(摘于gityuan.com)
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
//当调用一个空闲handler时,一个新message能够被分发,因此无需等待可以直接查询pending message.(摘于gityuan.com)
nextPollTimeoutMillis = 0;
}
}
nativePollOnce()是阻塞操作,其中nextPollTimeoutMillis代表下一个消息到来前,还需要等待的时长;当nextPollTimeoutMillis = -1时,表示消息队列中无消息,会一直等待下去。
当处于空闲时,往往会执行IdleHandler中的方法。当nativePollOnce()返回后,next()从mMessages中提取一个消息。(此两行摘抄于gityuan.com)
2.1.1 mPtr初始化和改变赋值
//在MessageQueue的构造函数中初始化
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit(); //本地方法中初始化
}
//dispose()中赋值为0
// Disposes of the underlying message queue.
// Must only be called on the looper thread or the finalizer.
private void dispose() {
if (mPtr != 0) {
nativeDestroy(mPtr);//nativeDestroy
mPtr = 0;
}
}
Handler消息的分发dispatchMessage
在Looper.loop()中有
msg.target.dispatchMessage(msg);
此处调用的是msg.target.dispatchMessage(),然而msg.target是Handler,我们先看看Message
//Message.java中声明了Handler的变量
/*package*/ Handler target;
Message的初始化,Message.java中有一个无参数构造函数,同时Android推荐使用obtain()方法来获取Message对象,因为Message创建后会通过recycleUnchecked把假如一个message池中,重复利用。
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
/** Constructor (but the preferred way to get a Message is to call {@link #obtain() Message.obtain()}).
*/
public Message() {
}
Message的回收
Message创建实例后,并不会直接释放而是放入消息池中,以便重复利用
/**
* Return a Message instance to the global pool.
* <p>
* You MUST NOT touch the Message after calling this function because it has
* effectively been freed. It is an error to recycle a message that is currently
* enqueued or that is in the process of being delivered to a Handler.
* </p>
*/
public void recycle() {
if (isInUse()) {
if (gCheckRecycle) {
throw new IllegalStateException("This message cannot be recycled because it "
+ "is still in use.");
}
return;
}
recycleUnchecked();
}
/**
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
*/
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
上面我们知道msg.target.dispatchMessage(),其实就是Handler.dispatchMessage()进行消息分发。我们直接看Handler源码中的dispatchMessage
/**
* Callback interface you can use when instantiating a Handler to avoid
* having to implement your own subclass of Handler.
*
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public interface Callback {
public boolean handleMessage(Message msg);
}
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
//如果msg中有callback,直接调用message.callback.run(),具体看下面
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) { //走自己实现的handleMessage,也就是我们自己代码中写的
return;
}
}
handleMessage(msg); //走我们自己实现的handleMessage,也就是Handler自身的回调方法handleMessage()
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
dispatchMessage(Message msg),只是分发message,然后回调Handler的handleMessage()让用户自己处理。
这样就把Handler,Looper,MessageQueue,Message联系在一起了。
小结
上面写得有点乱,也就是简单的走了一下,实在不好意思。不过还是建议有兴趣的朋友自己走走过程,加深影响。
不过,我们从上面看,可以粗略的看到。
- Handler、Message、Looper、MessageQueue有紧密的关系,请看下图(图片来源于gityuan.com)
- Handler的创建必须在prepare和loop之间,而且不允许多次调用prepare()